A R T I C L E S
Published on Web 03/10/2006

Stereoretentive Elimination and Trans-olefination of the Dicationic Dipalladium Moiety $\left[\mathrm{Pd}_{2} \mathrm{~L}_{n}\right]^{2+}$ Bound on 1,3,5-Trienes

Tetsuro Murahashi, ${ }^{*}$ Hiromitsu Nakashima, Tomoki Nagai, Yukari Mino, Taketoshi Okuno, M. Abdul Jalil, and Hideo Kurosawa*
Contribution from the Department of Applied Chemistry, Graduate School of Engineering, Osaka University, and PRESTO, Japan Science and Technology Agency (JST), Suita, Osaka, 565-0871, Japan

Received November 10, 2005; E-mail: tetsu@chem.eng.osaka-u.ac.jp; kurosawa@chem.eng.osaka-u.ac.jp

Abstract

The reaction of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) with $1,3,5$-hexatriene, 1,6 -diphenyl-1,3,5-hexatriene (DPHT), or 2,2,9,9-tetramethyl-3,5,7-decatriene (DBHT) afforded bi- η^{3}-allyldipalladium complexes 3, 4, or 5. The reaction of $\mathbf{1}$ and DBHT proceeded in a stereospecific (syn) manner when the reaction was carried out in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under aerobic conditions, while a mixture of two diastereomers was formed under N_{2} atmosphere. The two diastereomers ($5-E, Z, E$-antifacial and $5-E, E, E$-antifacial) formed from DBHT were isolated, and the structure of $5-E, Z, E$-antifacial, which was kinetically formed from the reaction of $\mathbf{1}$ and (E, E, E)-DBHT, was determined by X-ray diffraction analysis. Addition of phosphine ligands (PPh_{3} or dppm) to the dinuclear adduct $5-E, Z, E$-antifacial or $5-E, E, E$-antifacial in acetonitrile resulted in the stereospecific (syn) elimination of $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}(2)$ or $\left[\mathrm{Pd}_{2}(\mathrm{dppm})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (6). During the $\mathrm{PPh}_{3}{ }^{-}$ induced dinuclear elimination, the phosphine adducts 7 that retain bi- η^{3}-allyldipalladium structure were observed initially. The phosphine adduct generated from 5-E,E,E-antifacial was isolated and structurally characterized by X-ray diffraction analysis. The reaction of $\mathbf{1}$ and DPHT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded unique dipalladium sandwich compounds $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}-\mathrm{DPHT}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}(8)$. Interconversion between the sandwich complexes and half-sandwich complexes occurred in a stereoretentive manner. The structure of the sandwich complex $8-E, Z, E$ formed from 4-E,E,E-antifacial and (E, Z, E)-DPHT was determined by X-ray diffraction analysis. Transfer of the dipalladium moiety $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]^{2+}$ from DPHT ligand of $4-E, E, E$-antifacial onto DBHT ligand proceeded in a stereoretentive manner. The observed stereoretentive dinuclear process is featured by the pairwise behavior of two palladium atoms sitting on the triene π-plane. In the dinuclear elimination, the two Pd atoms that are initially in the divalent state and bound on the opposite faces (antifacial) come to the synfacial positions to form a Pd-Pd bond prior to dissociation. These results represent the unique property of conjugated olefin as the multidentate ligands for metal-metal moieties.

Introduction

Conjugated sp^{2}-carbon frameworks act as unique π-coordinating polydentate ligands for multinuclear metal moieties. ${ }^{1-7}$ We recently found that $\mathrm{p} \pi$-conjugated polyenes act as excellent template ligands for a linear palladium chain. ${ }^{3-7}$ These findings prompted us to examine the mechanism of addition, elimination, and trans-olefination of a $\mathrm{Pd}-\mathrm{Pd}$ bonded moiety to/from $\mathrm{p} \pi$ -

[^0]conjugated olefins. Historically, the interaction between metalmetal bonded species and olefin has received considerable attention as models for adsorption/desorption on metal surfaces. ${ }^{8,9}$ It is known that some dinuclear metal-metal species add to conjugated olefin to afford "di- σ-bonded species" where a metal-metal bond is cleaved. ${ }^{10-14}$ Typically, $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ reacts with 1,3-butadiene or 1,3,5-hexatriene under the irradiation condition to form $\mathrm{Mn}_{2}\left(\mu-\eta^{3}: \eta^{1}\right.$-butadiene $)(\mathrm{CO})_{9}$ or $\mathrm{Mn}_{2}\left(\mu-\eta^{3}\right.$:

[^1]Scheme 1. Typical Examples of Dinuclear Addition, Elimination, and Trans-olefination Involving Conjugated Olefins

Scheme 2. Stereochemistry of Some Dinuclear Processes
a)

η^{3}-hexatriene)(CO) 8 (Scheme 1a). ${ }^{11}$ The mechanism of dinuclear elimination of o-xylylene from the benzodicobaltacyclohexene (Scheme 1b) was studied by Hersh and Bergman, and they proposed the involvement of a retro-Diels-Alder-type dinuclear elimination process. ${ }^{14}$ The dinuclear trans-olefination process has also been studied. ${ }^{15}$ Typically, diosmacyclobutane reacts with 1,3 -dienes to afford formal $[2+2]$ cycloaddition products from $\mathrm{Os}=\mathrm{Os}$ and the 1,3-diene with elimination of ethylene (Scheme 1c). ${ }^{15 b}$

The mechanistic studies have been conducted concerning the dinuclear processes involving mono-olefin. Norton and coworkers revealed that the dinuclear trans-olefination process involving diosmacyclobutane and mono-olefin proceeds in a stereospecific (syn) manner (Scheme 2a), and they proposed a stepwise mechanism involving preequilibrium between $\mu-\eta^{1}: \eta^{1}$-olefin and η^{2}-olefin complexes. ${ }^{16}$ The dinuclear processes are not always stereoretentive. Johnson and Gladfelter reported that a Ru_{2} center in $\mathrm{Ru}_{2}(\mathrm{dmpm})_{2}(\mathrm{CO})_{5}\left(\mathrm{dmpm}=\mathrm{Me}_{2^{-}}\right.$ $\mathrm{PCH}_{2} \mathrm{PMe}_{2}$) adds to mono-olefin in a nonstereospecific manner (Scheme 2b). ${ }^{17}$ It should be mentioned that Halpern et al.

[^2]reported that the $\mathrm{Rh}-\mathrm{Rh}$ bonded species having rigid porphyrin ligands adds to styrene via a radical chain process. ${ }^{18}$

However, no systematic study has been undertaken of the dinuclear processes involving a $\mathrm{p} \pi$-conjugated olefin in which the stereochemistry is well documented, probably due to the lack of appropriate model systems. Involvement of concerted processes such as the dimetalla-Diels-Alder pathway and the migratory insertion pathway may result in highly stereospecific dinuclear reactions, while stepwise processes such as radical pathways should give rise to nonstereospecific reactions. It is also known that several olefin-bridged dimetal complexes without metal-metal bonds were synthesized by the reaction of cationic mononuclear olefin complexes with metal nucleophiles. ${ }^{10}$ Typically, $\left[\operatorname{Re}(\mathrm{CO})_{5}\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$reacted with $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]^{-}$ to afford $\operatorname{Re}(\mathrm{CO})_{5}\left(\mu-\eta^{1}: \eta^{1}-\mathrm{C}_{4} \mathrm{H}_{6}\right) \operatorname{Re}(\mathrm{CO})_{5} .{ }^{19}$ Although the stereochemistry of such an ionic process has not been reported, a net stereospecific dinuclear addition may be involved if antiattack of a metal nucleophile to the coordinated olefin takes place.

We recently developed the chemistry of $\mathrm{Pd}-\mathrm{Pd}$ bonded complexes $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})^{20}$ and $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]-$ $\left[\mathrm{BF}_{4}\right]_{2}$ (2), ${ }^{21}$ which are isolable but highly reactive with unsaturated hydrocarbons under mild conditions, ${ }^{21-23}$ due to the substitutionally labile property of acetonitrile ligands on dipalladium centers. Furthermore, as the bridging ability of the nitrile or PPh_{3} ligands is poor, ${ }^{22}$ the dinuclear processes involving such $\mathrm{Pd}-\mathrm{Pd}$ species might be free from strong geometrical constraints imposed by bridging auxiliary ligands often required to support $\mathrm{M}-\mathrm{M}$ bonds in other complexes. In hopes of better understanding the dinuclear processes of the $\mathrm{Pd}_{2}{ }^{2+}$ moiety embedded on conjugated olefin, we started examining the addition, elimination, and trans-olefination of the $\left[\mathrm{Pd}_{2} \mathrm{~L}_{n}\right]^{2+}$ moiety.

The syn and anti dinuclear additions to terminally disubstituted conjugated olefin can lead to different diastereomers. We elected 1,6-disubstituted 1,3,5-trienes as the conjugated olefin, which would give the addition products as stable bi- η^{3} allyl dimetal complexes as found in Scheme 1a. ${ }^{11}$ In Scheme 3 , the two series of stereoisomers of bi-allyl complexes resulting from hypothetical suprafacial dinuclear addition to 1,6-disubstituted 1,3,5-hexatriene are summarized, where fast equilibria via $\pi-\sigma-\pi$ isomerization at the η^{3}-allylpalladium moiety ${ }^{24}$ are assumed to be attained. For example, the trienes having odd numbers of olefinic E double bonds give one series of the products different from another derived from the trienes having even numbers of E double bonds (including zero E). Intercross-
(17) Johnson, K. A.; Gladfelter, W. L. Organometallics 1991, 10, 376.
(18) (a) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc. 1985, 107, 4333. (b) Wayland, B. B.; Feng, Y.; Ba, S. Organometallics 1989, 8, 1438.
(19) Beck, W.; Raab, K.; Nagel, U.; Sacher, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 505.
(20) Murahashi, T.; Nagai, T.; Okuno, T.; Matsutani, T.; Kurosawa, H. Chem. Соттип. 2000, 1689.
(21) Murahashi, T.; Otani, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 1998, 120, 4536.
(22) Murahashi, T.; Otani, T.; Okuno, T.; Kurosawa, H. Angew. Chem., Int. Ed. 2000, 39, 537.
(23) Murahashi, T.; Okuno, T.; Nagai, T.; Kurosawa, H. Organometallics 2002, 21, 3679 .
(24) $\pi-\sigma-\pi$-isomerism of allylpalladium complexes: (a) Vrieze, K.; MacLean, C.; Cosse, P.; Hilbers, C. W. Recl. Trav. Chim. Pays-Bas 1966, 85, 1077. (b) Vrieze, K.; Volger, H. C. J. Organomet. Chem. 1967, 9, 537. (c) van Leeuwen, P. W. N. M.; Vrieze, K.; Praat, A. P. J. Organomet. Chem. 1969, 20, 219. (d) van Leeuwen, P. W. N. M.; Praat, A. P. J. Organomet. Chem. 1970, 21, 501. (e) Powell, J.; Shaw, B. L. J. Chem. Soc. A 1967, 1839.

Scheme 3. Two Series from Suprafacial Dinuclear Addition to 1,6-Disubstituted 1,3,5-Hexatrienes

Scheme 4

ing across the two series cannot be attained by conventional $\pi-\sigma-\pi$ allylic isomerization. ${ }^{24,25}$ Thus, analysis of the product distribution of each series from an "odd E triene" or an "even E triene" would provide stereochemical information on the dinuclear processes involving 1,3,5-triene (Scheme 4). ${ }^{26}$

It is noticeable that the type of conformation, s-cis or s-trans, which a given 1,3,5-triene takes at any $\mathrm{C}-\mathrm{C}$ single bond, does not affect the nature of the product series. For example, three conformers arising from s-cis/s-trans conformations of 1,6disubstituted (E, E, E)-triene, that is, s-trans,s-trans triene, s-cis,s-trans triene, and s-cis,s-cis triene, give one series of products upon suprafacial dinuclear addition (Scheme 5).

In a previous communication, ${ }^{4}$ we reported that dinuclear addition of the complex $\mathbf{1}$ to 1,6-diphenyl-1,3,5-hexatriene (DPHT) afforded a mixture of isomers, each included in the different series. However, it was difficult to estimate the diastereoselectivity of the dinuclear addition step, as will be mentioned in section 1 in this Article, because the inter-series isomerization between two diastereomers proceeded competitively with the dinuclear addition reaction. As mentioned above, the intercrossing between two series cannot be explained by $\pi-\sigma-\pi$ allylic isomerization. The configurational lability of the η^{3}-allyl moiety ${ }^{25}$ during the dinuclear addition reaction using DPHT hampers the stereochemical investigation of the dinuclear processes as well as isolation of the thermally unstable isomer.

The stereochemical study of the reverse reaction, dinuclear elimination, may also provide valuable information of the

[^3]Scheme 5. Intra-series Products from s-cis or s-trans Conformers of (E, E, E)-Triene through Suprafacial Dinuclear Addition

Scheme 6

dinuclear processes (Scheme 6), ${ }^{26}$ if the dinuclear elimination process is much faster than the isomerization causing intercrossing between the series. The stereochemical information on the dinuclear trans-olefination process is also complementary to the dinuclear addition and elimination processes (Scheme 6). ${ }^{26}$ For such studies, it is necessary to isolate the two series of products, separately.

In this contribution, we report successful isolation of two series of products by employing 2,2,9,9-tetramethyl-3,5,7decatriene (DBHT). ${ }^{27}$ It is proven that the dinuclear elimination and transfer of dipalladium moieties bound on trienes is highly stereospecific (syn). Furthermore, details of unique sandwich coordination of DPHT to a dipalladium center $\left[\mathrm{Pd}_{2}\right]^{2+}$ are reported.

Results and Discussion

1.1. Dinuclear Addition Reactions Involving $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathbf{C N}\right)_{6}\right]-$ $\left[\mathrm{BF}_{4}\right]_{2}(1)$ or $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime \prime}\right)$ and $1,3,5-$ Hexatriene (HT). The homoleptic acetonitrile dipalladium(I) complex $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) was prepared according to the reported method. ${ }^{20}$ The structure of $\mathbf{1}$ was determined here by X-ray structure analysis (Figure 1). The Pd-Pd bond (2.486(1) \AA) is the shortest among ever known $\mathrm{Pd}^{\mathrm{I}-} \mathrm{Pd}^{\mathrm{I}}$ bonds. ${ }^{28}$ The Pd-N distances ($2.165(9), 2.147(9) \AA$) trans to the $\mathrm{Pd}-\mathrm{Pd}$ bond are longer than those (1.976(8), 2.001(8), 1.988(8), 1.987(8)
(27) In this Article, 2,2,9,9-tetramethyl-3,5,7-decatriene is abbreviated as DBHT, which is derived from a conventional name " 1,6 -di- t - $\mathrm{Bu}-1,3,5$-hexatriene". (28) Murahashi, T.; Kurosawa, H. Coord. Chem. Rev. 2002, 231, 207.

Figure 1. ORTEP drawing of 1 (50% probability ellipsoids, BF_{4} anions were omitted for clarity). Selected bond distances (\AA) and angles (deg): Pd1-Pd2 2.486(1), Pd1-N1 2.165(9), Pd2-N2 2.147(9), Pd1-N3 1.976(8), Pd1-N4 2.001(8), Pd2-N5 1.988(8), Pd2-N6 1.987(8), Pd1-Pd2-N6 86.4(2), Pd1-Pd2-N5 87.7(2), Pd1-Pd2-N2 174.7(2), Pd2-Pd1-N3 84.4(2), Pd2-Pd1-N4 86.6(2), Pd2-Pd1-N1 178.1(2).

Figure 2. ORTEP drawing of 3b (50% probablity ellipsoids, PF_{6} anions were omitted for clarity). Selected bond distances (\AA): Pd1-N1 2.067(9), Pd1-P1 2.305(2).
\AA) cis to the $\mathrm{Pd}-\mathrm{Pd}$ bond, probably due to a strong transinfluence of the $\mathrm{Pd}-\mathrm{Pd}$ bond relative to that of acetonitrile ligand. The $\mathrm{Pd}-\mathrm{N}$ lengths at the cis positions to the $\mathrm{Pd}-\mathrm{Pd}$ bond are similar to those in the corresponding homoleptic mononuclear $\mathrm{Pd}(\mathrm{II})$ complex $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1.956(8) A.). ${ }^{29}$

Complex 1 reacted with 1,3,5-hexatriene (HT, a mixture of E - and Z-isomers) in acetonitrile at $25^{\circ} \mathrm{C}$ for 1 h to afford a half-sandwich complex $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}: \eta^{3}\right.\right.$-hexatriene $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ $\left[\mathrm{BF}_{4}\right]_{2}$ (3a) in 75% isolated yield (eq 1). The ${ }^{1} \mathrm{H}$ NMR monitoring experiments in $\mathrm{CD}_{3} \mathrm{CN}$ showed that complex 3a was formed almost quantitatively. The similar product $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{3}\right.\right.$: η^{3}-hexatriene $\left.)\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}(\mathbf{3 b})$ was obtained by the reaction of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime \prime}\right)^{22}$ with $1,3,5-$ hexatriene (a mixture of isomers) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (eq 2,52\% isolated yield), and its structure was determined by X-ray structure analysis (Figure 2). The two palladium atoms are bound on opposite faces of the E-s-trans,s-trans-1,3,5-hexatriene ligand through η^{3}-allyl coordination mode. Because of the disorder of the hexatriene ligand, it is difficult to discuss the structural parameters with regard to the coordination of 1,3,5-hexatriene ligand in $\mathbf{3 b}$. The formation of the identical product from a

[^4]

Figure 3. ORTEP drawings of 4-E,E,E-antifacial (left) and $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ antifacial (right) (50% probability ellipsoids, BF_{4} anions were omitted for clarity). Selected bond lengths (\AA) for $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial, Pd1-C1 2.132(4), Pd1-C2 2.129(4), Pd1-C3 2.128(4), C1-C2 1.393(5), C2-C3 1.411(5), C3-C3* 1.474(7); for 5-E,Z,E-antifacial, Pd1-C1 2.159(8), Pd1-C2 2.111(9), Pd1-C3 2.121(8), Pd2-C4 2.113(9), Pd2-C5 2.111(9), Pd2-C6 2.179(9), C1-C2 1.40(1), C2-C3 1.39(1), C3-C4 1.49(1), C4-C5 1.39(1), C5-C6 1.42(1).
mixture of E-1,3,5-hexatriene and Z-1,3,5-hexatriene is understood by the involvement of rapid allylic $\pi-\sigma-\pi$ isomerization. When the isolated $\mathbf{3 b}$ was dissolved in $\mathrm{CD}_{3} \mathrm{CN}$, partial dinuclear elimination involving dissociation of free $1,3,5$-hexatriene from 3b was observed, ${ }^{30}$ where $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CD}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime}\right)^{21}$ was formed (37% after 4 h).

1.2. Dinuclear Addition Reactions Involving $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]$ $\left[\mathrm{BF}_{4}\right]_{2}$ (1) and 1,6-Diphenyl-1,3,5-hexatriene (DPHT). As was previously communicated, ${ }^{4}$ the homoleptic acetonitrile dipalladium(I) complex $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})$ reacted with all-trans-1,6-diphenyl-1,3,5-hexatriene ((E, E, E)-DPHT) in $\mathrm{CH}_{3} \mathrm{CN}$ at $23{ }^{\circ} \mathrm{C}$ to afford a half-sandwich complex 4 as a mixture of two diastereomers (4-E,Z,E-antifacial/4-E,E,E-antifacial = 22/ 78 after crystallization) (eq 3). ${ }^{4}$ The ${ }^{1} \mathrm{H}$ NMR monitoring experiments showed that the isomer ratio changed gradually (54/46 after $10 \mathrm{~min}, 46 / 54$ after $1 \mathrm{~h}, 20 / 80$ after 1 day). The major isomer of 4 was isolated by recrystallization, and its structure was determined by X-ray crystallographic analysis (Figure 3, left). ${ }^{4}$ Two Pd atoms coordinated on opposite faces of the (E, E, E)-DPHT ligand, and the major isomer is abbreviated as 4-E,E,E-antifacial. The η^{3}-coordination mode of each Pd atom as well as the single bond character of the central C3C3* bond length (1.474(7) A) indicated that the oxidation state of the dipalladium moiety in $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial is $2 \times \mathrm{Pd}^{\mathrm{II}}$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (Scheme

[^5]Scheme 7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Chemical Shifts (ppm) for 4-E,E,E-Antifacial and 8-E,E,E-Meso ${ }^{\text {a }}$

4-E,E,E-antifacial ${ }^{a}$
${ }^{a}$ (a)Measured in $\mathrm{CD}_{3} \mathrm{CN}$. (b) Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
7, left) are consistent with the bi- η^{3}-allyl palladium(II) structure. The allylic central carbons were less shielded than the allylic terminal carbons as typically observed for mononuclear η^{3}-allyl palladium(II) complexes. The minor isomer showed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signal patterns similar to those of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial. The structure of the minor isomer is assumed as $\mathbf{4}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial, by referring to the crystal structure of $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial (Figure 3, right) derived from DBHT (vide infra). The reaction of $\mathbf{1}$ with (E, Z, E)-DPHT in $\mathrm{CD}_{3} \mathrm{CN}$ also resulted in the formation of a mixture of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial and $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (38/62 after $1 \mathrm{~h}, 16 / 84$ after 1 day at $25^{\circ} \mathrm{C}$). Unfortunately, separation and isolation of $\mathbf{4 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial failed, due in part to the slow isomerization of $\mathbf{4}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$-antifacial to $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}-$ antifacial at ambient temperature, as well as the poor solubility of DPHT in acetonitrile at $-40^{\circ} \mathrm{C}$ that caused low conversion in the low-temperature experiments.

1.3. Dinuclear Addition Reactions Involving $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathbf{C N}\right)_{6}\right]-$ $\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})$ and 2,2,9,9-Tetramethyl-3,5,7-decatriene (DBHT). Next, we chose 2,2,9,9-tetramethyl-3,5,7-decatriene (DBHT) ${ }^{27}$ as the triene ligand. It was found that the isomer ratio of products was dependent on the reaction conditions including solvent and reaction atmosphere.

In acetonitrile, the reaction of $\mathbf{1}$ with (E, E, E)-DBHT (1 equiv) or ($E, Z, E)$-DBHT gave a mixture of two isomers, 5-E,Z,Eantifacial and 5-E,E,E-antifacial (isomer ratio $=76 / 24$ from (E, E, E)-DBHT, 85% conversion after $5 \mathrm{~min} ; 56 / 44$ from (E, Z, E)-DBHT, 84% conversion after 5 min). The stereochemistry of these products was determined by X-ray crystallography on 5-E,Z,E-antifacial (Figure 3, right) and the PPh_{3} adduct of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (Figure 4), as discussed later.

In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ under N_{2}, a mixture of two isomers was formed again (80/20 from (E, E, E)-DBHT, 69% conversion after 5 min ; 61/39 from (E, Z, E)-DBHT, 49% conversion after 5 min) (Scheme 8). However, when each reaction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was carried out under aerobic conditions, the adduct was formed as the single isomer. From (E, E, E)-DBHT, 5-E,Z,E-antifacial was formed quantitatively after 1 day $(>99 /<1,51 \%$ conversion after 5 min) (Scheme 8). From (E, Z, E)-DBHT, 5-E, $\boldsymbol{E}, \boldsymbol{E}$-antifacial was formed exclusively after $5 \mathrm{~min}(<1 />99,26 \%$ conversion), while considerable mixing of the two isomers was observed after 1 day ($77 / 23,44 \%$ conversion).

The product $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial, which was exclusively formed from (E, E, E)-DBHT under aerobic conditions, was isolated in 76% yield, and its structure is shown in Figure 3,

Figure 4. ORTEP drawing of 7-E,E,E-antifacial (50% probability ellipsoids, BF_{4} anions were omitted for clarity). Selected bond distances ($\AA): ~ P d 1-N 12.05(1), \mathrm{Pd} 1-\mathrm{P} 12.336(4), \mathrm{Pd} 2-\mathrm{N} 2$ 2.08(1), Pd2-P2 2.334(4).

Scheme 8^{a}

${ }^{a}$ (a) Under aerobic conditions.
right. The coordination mode of the triene is $\mu-\eta^{3}: \eta^{3}$, and the trend of $\mathrm{C}-\mathrm{C}$ bond lengths for the triene part is similar to that in $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial. However, the configuration around the $\mathrm{C} 3-\mathrm{C} 4$ bond (cisoid) in $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial is different from that of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (transoid).

5-E, $\boldsymbol{E}, \boldsymbol{E}$-Antifacial was isolated by stirring the mixture of 5-E,Z, \boldsymbol{E}-antifacial and free (E, E, E)-DBHT in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ overnight, followed by recrystallization (54% yield). The isomerization shown in eq 4 did not occur in the absence of free (E, E, E)DBHT, while the role of (E, E, E)-DBHT in eq 4 remains elusive. ${ }^{31}$ The isolated $\mathbf{5 - \boldsymbol { E } , \boldsymbol { E } , \boldsymbol { E } \text { -antifacial did not undergo }}$ isomerization even in the presence of excess (E, E, E)-DBHT.

Thus, two diastereomers derived from different series shown in Scheme 3 were successfully isolated as $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial
and $\boldsymbol{5}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial. The stereospecific nature of the dinuclear addition process involving $\mathbf{1}$ and DBHT was observed only in the initial stage of the reactions carried out under aerobic conditions in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. It may well be that the dinuclear addition process is intrinsically stereospecific, but is competing with some other processes leading to the formation of the opposite series of products. The competitive occurrence of inter-series isomerization during the dinuclear addition process particularly under N_{2} atmosphere is probably induced by some palladium species, for example, Pd^{0}, which could be generated by decomposition of reagent and product complexes. ${ }^{32 a}$ It is known that the cationic η^{3}-allylpalladium complex is subjected to nucleophilic anti-attack of Pd^{0}, which gives rise to the configurational lability of η^{3}-allylpalladium complexes (eq 5). ${ }^{25}$ Similar anti-attack of a Pd^{0} species at $\mathbf{5}$ may result in the inter-series isomerization, where a catalytic amount of Pd^{0} species works effectively under inert condition. At present, involvement of inter-series isomerization makes the evaluation of the stereochemistry of the dinuclear addition process involving 1 and 1,3,5-trienes difficult. ${ }^{32 \mathrm{~b}}$

(5)

2. Phosphine-Induced Dinuclear Elimination from DBHT

Half-Sandwich Complexes. From the viewpoint of the microscopic reversibility principle, elimination of a $\mathrm{Pd}-\mathrm{Pd}$ bonded moiety from bi- η^{3}-allyl dipalladium(II) complexes is of great interest in relation to the dinuclear addition reactions discussed above. The major problem of the dinuclear addition processes is that the rate of dinuclear addition is competitive with that of inter-series isomerization particularly under N_{2} atmosphere. However, as described in the Introduction, the stereochemical study of the reverse reaction, dinuclear elimination, may provide valuable information of the dinuclear processes, if the dinuclear elimination is much faster than the inter-series isomerization. We found that dinuclear elimination reactions from 5-E,Z,Eantifacial or $\mathbf{5 - E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial occurred rapidly by adding phosphines. Note that the choice of the solvent $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ was important to the dinuclear elimination.

Treatment of $\mathbf{5 - E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial with 2 equiv of dppm $\left(\mathrm{Ph}_{2^{-}}\right.$ $\mathrm{PCH}_{2} \mathrm{PPh}_{2}$) in $\mathrm{CD}_{3} \mathrm{CN}$ at $0{ }^{\circ} \mathrm{C}$ afforded (E, Z, E)-DBHT and $\left[\mathrm{Pd}_{2}(\mathrm{dppm})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}(6)^{33}$ almost quantitatively after 10 min (eq 6). According to this reaction, (E, Z, E)-DBHT was isolated in 81% yield. Thus, a thermodynamically unfavorable isomerization from (E, E, E)-DBHT to (E, Z, E)-DBHT was attained through the sequence of dinuclear addition of $\mathbf{1}$ to (E, E, E)-DBHT to give $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial, isomerization of 5-E,Z,E-antifacial to 5-E,E,E-antifacial, and dinuclear elimination from 5-E,E,E-antifacial. When 5-E,Z,E-antifacial was

[^6]Scheme 9. PPh_{3}-Induced Dinuclear Elimination from 5-E,Z,E-Antifacial

treated with dppm (2 equiv) in the same condition, complex $\mathbf{6}$ and (E, E, E)-DBHT ($>97 \%$) were formed, where trace (E, Z, E) DBHT ($<3 \%$) was observed (eq 7).

When 5-E,Z, \boldsymbol{E}-antifacial was treated with 2 equiv of PPh_{3} in $\mathrm{CD}_{3} \mathrm{CN}$ at $5-10^{\circ} \mathrm{C}$, a $\mathrm{Pd}-\mathrm{Pd}$ bonded complex 2 and $(E, E, E)-$ DBHT were formed quantitatively (Scheme 9). The reaction was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy at $5-10$ ${ }^{\circ} \mathrm{C}$. After 5 min , the starting materials disappeared and free (E, E, E)-DBHT (45\%), the Pd-Pd bonded complex 2 (44%), and phosphine adduct $7-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial (55%) were observed. The phosphine adduct $7-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial was then gradually converted to free (E, E, E)-DBHT and 2, and the yields of (E, E, E)-DBHT and $\mathbf{2}$ reached 97% and 96%, respectively, after 1 day, where a small amount of the phosphine adduct (3\%) remained. During the reaction, the formation of (E, Z, E)-DBHT was not observed.
When the same reaction was carried out at $-40{ }^{\circ} \mathrm{C}$, the phosphine adduct $\mathbf{7 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial was generated almost quantitatively, and $\mathbf{7 - E , Z , E - a n t i f a c i a l ~ r e m a i n e d ~ a s ~ t h e ~ s o l e ~}$ species after warming the sample to $0^{\circ} \mathrm{C} .7-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-Antifacial existed as a mixture of two isomers (major/minor $=95 / 5$). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal for the major isomer was observed at δ 20.6 ppm as a broad singlet at $-40{ }^{\circ} \mathrm{C}$. In ${ }^{1} \mathrm{H}$ NMR spectra, the triene protons for the major isomer appeared as three signals at $-40^{\circ} \mathrm{C}$, and the chemical shift pattern is similar to those found in $\mathbf{5}$. Thus, it is reasonably assumed that the major isomer retains the $\mu-\eta^{3}: \eta^{3}$-bi-allyl structure, as drawn in Scheme 9 . On the other hand, the concentration of the minor isomer was too low to lead to structural estimation. However, upon warming the sample containing both isomers of the PPh_{3} adduct to 25 ${ }^{\circ} \mathrm{C}$, free (E, E, E)-DBHT and $\mathbf{2}$ were gradually formed. Thus, both isomers of $\mathbf{7 - E}, \mathbf{Z}, \boldsymbol{E}$-antifacial would retain the stereogenic identity of $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial.

Treatment of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ - antifacial with 2 equiv of PPh_{3} in $\mathrm{CD}_{3}{ }^{-}$ CN at $5^{\circ} \mathrm{C}$ resulted in the formation of two phosphine adducts, 7-E,E,E-antifacial and a structurally unspecified minor product (7-E, $\boldsymbol{E}, \boldsymbol{E}$-antifacial/minor $=78 / 22$ in $\mathrm{CD}_{3} \mathrm{CN}$ at $-40^{\circ} \mathrm{C}$, almost quantitative after 5 min) (Scheme 10). The formation of a small amount of 2 (2\%) and free (E, Z, E)-DBHT (7\%) was observed.

Scheme 10. PPh_{3}-Induced Dinuclear Elimination from

 5-E,E,E-Antifacial

The phosphine adducts then decreased gradually. After 3 days, the ratio of the phosphine adducts ($\mathbf{7}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial + the minor product), the $\mathrm{Pd}-\mathrm{Pd}$ complex 2, and free (E, Z, E)-DBHT reached $1: 1: 1$, and the ratio did not change for 15 days.

7-E,E,E-Antifacial was isolated and structurally characterized by X-ray structure analysis (Figure 4). Although the triene part was considerably disordered, the configuration of the triene moiety in the complex is reasonably concluded as E, E, E by comparing the distance between quaternary carbons of t - Bu groups ($8.83 \AA$) with that in $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial ($7.89 \AA$) and with the distance between ipso-carbons of Ph groups in $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ antifacial ($8.82 \AA$). When crystalline $\mathbf{7 - \boldsymbol { E } , \boldsymbol { E } , \boldsymbol { E } \text { -antifacial was }}$ dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra showed the presence of two species. The major set of the resonances was consistent with the structure found in the crystalline state; three trienyl proton signals and one phosphorus singlet were observed. On the other hand, the minor isomer showed six trienyl protons and two phosphorus doublet ($J_{\mathrm{PP}}=13 \mathrm{~Hz}$) signals. While the structure of the minor isomer cannot be decisively assumed from the NMR data, ${ }^{34}$ the stereogenic identity of the triene in 7-E, $\boldsymbol{E}, \boldsymbol{E}$-antifacial is retained in the minor isomer because warming the sample of a mixture of 7-E,E,E-antifacial and the minor isomer in $\mathrm{CD}_{3} \mathrm{CN}$ resulted in the selective conversion to (E, Z, E)-DBHT and $\mathbf{2}$, as mentioned above. In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, 7-E, $\boldsymbol{E}, \boldsymbol{E}$-antifacial and the minor isomer did not undergo dinuclear elimination at $25^{\circ} \mathrm{C}$.

When the complex 2 and free (E, Z, E)-DBHT were dissolved in $\mathrm{CD}_{3} \mathrm{CN}$, gradual formation of $7-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial and the minor isomer was observed and the ratio reached (7-E,E,Eantifacial + minor isomer):2:DBHT $=1: 1: 1$ after 1 day. In this case, however, trace free (E, E, E)-DBHT was observed (3\%). Thus, the dinuclear elimination from the phosphine adducts $\boldsymbol{7}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial is reversible. On the other hand, no reaction was observed when the mixture of compound $\mathbf{2}$ and free (E, E, E)DBHT in $\mathrm{CD}_{3} \mathrm{CN}$ was left for 1 day.

Thus, it is concluded that phosphine-induced dinuclear elimination from the half-sandwich DBHT dipalladium(II) complexes $\mathbf{5}$ is highly stereospecific. The observed stereochemistry is reasonably understood as the suprafacial (syn) elimina-

[^7]

Scheme 11. Three Possible Pathways for Dinuclear Elimination from E,E,E-Antifacial Complexes

tion of the dipalladium(I) moiety from DBHT. The 180° rotation at the central $\mathrm{C}-\mathrm{C}$ bond of the DBHT ligand in $7-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}-$ antifacial or 7-E,E,E-antifacial would give 7-E,E,E-synfacial or $\mathbf{7 - E}, \boldsymbol{Z}, \boldsymbol{E}$-synfacial, respectively (Scheme 11). In the synfacial complexes, two Pd atoms are located at the juxtaposition with each other, allowing the $\mathrm{Pd}-\mathrm{Pd}$ bond formation. As summarized in Scheme 11, there are three possible pathways for the stereoretentive elimination from the synfacial complexes: (a) retro-migratory insertion, (b) retro-dimetalla-[4 $\pi+2 \sigma]$ reaction, and (c) retro-dimetalla-[$6 \pi+2 \sigma]$ reaction. However, it is difficult to discriminate these three pathways on the basis of the experimental observations. It is noticeable that $\mu-\eta^{2}: \eta^{2}-1,3$-diene dipalladium complexes that are related to the intermediate \mathbf{E} in the retro-dimetalla- $[4 \pi+2 \sigma]$ reaction are known. ${ }^{21,35,36}$ Of particular interest is the structure of the bis-1,3-butadiene dipalladium(I) complex $\left[\mathrm{Pd}_{2}\left(\mu-\eta^{2}: \eta^{2}-1,3 \text {-butadiene }\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left[\mathrm{PF}_{6}\right]_{2}$, which shows an exceptionally long $\mathrm{Pd}-\mathrm{Pd}$ length (3.1852(6) $\AA) .{ }^{21}$ The long $\mathrm{Pd}-\mathrm{Pd}$ separation may be regarded as the result of trapping of an intermediate of the dimetalla$[4 \pi+2 \sigma]$ process. The isolobal analogy between the dimetalla$[4 \pi+2 \sigma]$ reaction and the parent $[4 \pi+2 \pi]$ Diels-Alder reaction can be understood qualitatively by considering the symmetry of frontier orbitals as shown in Scheme 12. The related retro-dimetalla- $[4 \pi+2 \pi]$ process was proposed to be involved in the o-xylylene elimination from $\left[\mathrm{Co}_{2}(o\right.$-xylylene $\left.) \mathrm{Cp}_{2}(\mu-\mathrm{CO})_{2}\right]$ (Scheme 2a). ${ }^{14}$

The observed stereospecific dipalladium elimination from DBHT is featured by the pairwise behavior of two palladium

[^8]Scheme 12. Isolobal Analogy between the Dimetalla-[4 $\pi+2 \sigma]$ Process and the [$4 \pi+2 \pi$] Diels-Alder Process

atoms sitting on the triene π-plane. The two Pd moieties in 5 are initially in the divalent state, and there is no $\mathrm{Pd}-\mathrm{Pd}$ bond between them. When those are subjected to a condition for dissociation from DBHT, two palladium atoms come to the synfacial positions to form a $\mathrm{Pd}-\mathrm{Pd}$ bond prior to dissociation.
3.1. Formation of Sandwich Dipalladium Complexes of 1,6-Diphenyl-1,3,5-hexatriene (DPHT). When complex 1 was treated with (E, E, E)-DPHT (excess) in dichloromethane, the sandwich complex $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso was formed almost quantitatively (eq 8). ${ }^{4}$ Although two isomers are possible for the complex $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ depending on the stacking manner of the two zigzag (E, E, E)-DPHT ligands, only meso isomer was observed throughout the monitoring experiments. ${ }^{37}$ The complex 8-E,E,Emeso was isolated in 77% yield after recrystallization.

The structure of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso was determined by X-ray structure analysis (Figure 5). ${ }^{4}$ Two independent molecules were

Figure 5. ORTEP drawings of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso (two independent molecules in a unit cell, 50% probability ellipsoids, BF_{4} anions were omitted for clarity). Selected bond lengths (A): Pd1-Pd1* 2.9156(6), Pd1-C1 2.378(4), Pd1-C2 2.176(3), Pd1-C3 2.193(3), Pd1-C4 2.231(3), Pd1C5 2.168(3), Pd1-C6 2.355(4), Pd2-Pd2* 2.9400(5), C1-C2 1.376(6), C2-C3 1.424(5), C3-C4* 1.395(5), C4-C5 1.430(5), C5-C6 1.385(5), Pd2-C7 2.345(4), Pd2-C8 2.177(3), Pd2-C9 2.223(3), Pd2-C10 2.216(3), Pd2-C11 2.152(4), Pd2-C12 2.352(4), C7-C8 1.374(5), C8C9 1.421(4), C9-C10* 1.403(5), C10-C11 1.431(4), C11-C12 1.383(5).
found in a unit cell, and each molecule shows similar structural parameters. The $\mathrm{Pd}-\mathrm{Pd}$ distances (2.9156(6) and 2.9400(5) \AA) are within the range of known $\mathrm{Pd}-\mathrm{Pd}$ lengths (2.391-3.185 A). ${ }^{28}$ Although the coordination mode ($\mu-\eta^{3}: \eta^{3}$-mode) of DPHT ligand in $\mathbf{8 - E}, \boldsymbol{E}, \boldsymbol{E}$-meso is the same as that in 4-E,E,E-

[^9]antifacial, the trend of $\mathrm{C}-\mathrm{C}$ bond lengths in each triene part was quite different between the two complexes; the central $\mathrm{C}-\mathrm{C}$ bond length (C3-C4* 1.395(5) A or C9-C10* 1.403(5) A) in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso is significantly shorter than that in $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ antifacial (1.474(7) $\AA)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal pattern of the triene part in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso was also considerably different from that in $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (Scheme 7). While 4-E,E,Eantifacial showed ${ }^{13} \mathrm{C}$ chemical shifts of the allylic central carbons at lower field than those of allylic terminal carbons as mentioned in section 1.2, the chemical shift of the allylic terminal carbons in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso appeared at the field similar to or lower than that of the allylic central carbons (Scheme 7). Thus, the structural and spectroscopic aspects give little support to bi- η^{3}-allyl dianion character in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso and suggest the considerable contribution of the electronic structure involving less-reduced DPHT ligands and less-oxidized $\mathrm{Pd}-\mathrm{Pd}$ moiety in $\boldsymbol{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso. ${ }^{38}$

As mentioned in section 1.3, the reaction of $\mathbf{1}$ with DBHT (excess) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ afforded no sandwich complex but halfsandwich complexes 5. Probably, stacking of two DBHT planes required for formation of sandwich complexes is hampered by the steric congestion between t - Bu groups.

3.2. Interconversion between Half-Sandwich and Sandwich Complexes of 1,6 -Diphenyl-1,3,5-hexatriene (DPHT). When the sandwich complex $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso was dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ at $-40{ }^{\circ} \mathrm{C}$, one of the (E, E, E)-DPHT ligands was replaced by four acetonitrile ligands to give the half-sandwich complex $\mathbf{4}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$-antifacial quantitatively. ${ }^{4}$ Warming the sample to $25^{\circ} \mathrm{C}$ then resulted in the isomerization of 4-E,Z,E-antifacial to a mixture of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial/4- $\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial (22/78) within 1 day in $\mathrm{CD}_{3} \mathrm{CN}$. When a solid sample of $4-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ antifacial obtained by evaporation of its $\mathrm{CD}_{3} \mathrm{CN}$ solution at $-40^{\circ} \mathrm{C}$ was treated with (E, E, E)-DPHT (5 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, the four acetonitrile ligands were immediately replaced by (E, E, E)-DPHT to generate the sandwich complex $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-rac as a kinetic product. ${ }^{39}$ Ultimately, $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}-\mathrm{rac}$ isomerized to 8-E, $\boldsymbol{E}, \boldsymbol{E}$-meso within 3 h at $23{ }^{\circ} \mathrm{C}$ (8-E,E,E-rac/8-E,E,E-meso $=2 / 98)$ (Scheme 13). Thus, the interconversion between halfsandwich and sandwich complexes occurred smoothly.

Treatment of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial with (E, Z, E)-DPHT (1 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ gave a new sandwich complex $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ as a single product, although the reaction was slow (13% conversion after 5 min) probably due to the poor solubility of $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ antifacial in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. After 0.5 h , a mixture containing 8 - $\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$ (17%), $\boldsymbol{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso (21%), and $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-rac (3\%) was yielded, where a free DPHT existed as a mixture of (E, Z, E)DPHT (19%) and (E, E, E)-DPHT (27%). Once isomerization of free (E, Z, E)-DPHT to free (E, E, E)-DPHT takes place due to

[^10]Scheme 13. Interconversion between Sandwich and Half-Sandwich Complexes

some palladium species as mentioned earlier, the $\mathrm{Pd}_{2}{ }^{2+}$ moiety is trapped by free (E, E, E)-DPHT to form the stable sandwich complex 8-E,E,E-meso.

The sandwich complex $\mathbf{8}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$ was isolated by a different method described in section 4 , and its structure was determined by X-ray structure analysis (Figure 6). The Pd-Pd bond length in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}(2.770(1)$ or $2.767(1) \AA)$ is shorter than that in $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso (2.9156(6) or $2.9400(5) \AA$). In the crystal, the dication of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ held a pair of BF_{4} anion and $\mathrm{H}_{2} \mathrm{O}$ through supramolecular interaction at its concave space (Figure 7). $\mathrm{BF}_{4}{ }^{-}$ and $\mathrm{H}_{2} \mathrm{O}$ were connected through a hydrogen bond ($\mathrm{F} \cdots \mathrm{O}$ distance $2.82(1)$ or $2.84(1) \AA$). One of the four fluorine atoms of BF_{4} and the oxygen atom of $\mathrm{H}_{2} \mathrm{O}$ are located near the four hydrogen atoms of each trans,cis,trans-DPHT ligand (F $\cdots \mathrm{C}$ distances 3.20-3.64 A, O $\cdots \mathrm{C}$ distances 3.29-3.69 A).

Treatment of 4-E,E,E-antifacial with (E, E, E)-DPHT (5 equiv) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ afforded $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-rac. ${ }^{39}$ Interestingly, however, the formation of free (E, Z, E)-DPHT was also observed during the reaction (86% NMR yield). ${ }^{4}$ It is reasonably assumed that (E, Z, E)-DPHT was released during the conversion of $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial to $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}-\mathrm{rac}$, in view of the fact that (E, Z, E)-DPHT is thermodynamically less stable than (E, E, E) DPHT. As depicted in Scheme 13, dissociation of (E, Z, E)-DPHT can be explained by the initial formation of $\mathbf{4}-\boldsymbol{E}, Z, \boldsymbol{E}$-synfacial, which is a rotamer of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial at the central $\mathrm{C}-\mathrm{C}$ bond of DPHT ligand. In 4-E,Z,E-synfacial, two Pd atoms that are arranged co-facial are allowed to have a direct $\mathrm{Pd}-\mathrm{Pd}$

[^11]

Figure 6. ORTEP drawings of $\mathbf{8}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$ (two independent molecules in a unit cell, 50% probability ellipsoids, BF_{4} anions and water molecules were omitted for clarity). Selected bond lengths (\AA): Pd1 - Pd2 2.770(1), Pd1 C1 2.398(10), Pd1-C2 2.18(1), Pd1-C3 2.19(1), Pd2-C4 2.196(9), Pd2C5 2.184(10), Pd2-C6 2.36(1), Pd2-C7 2.40(1), Pd2-C8 2.17(1), Pd2C9 2.19(1), Pd1-C10 2.20(1), Pd1-C11 2.17(1), Pd1-C12 2.35(1), C1C2 1.38(1), C2-C3 1.41(1), C3-C4 1.44(2), C4-C5 1.42(1), C5-C6 1.38(1), C7-C8 1.39(2), C8-C9 1.41(2), C9-C10 1.43(2), C10-C11 1.42(1), C11-C12 1.41(2), Pd3-Pd4 2.767(1), Pd3-C37 2.42(1), Pd3C38 2.18(1), Pd3-C39 2.18(1), Pd4-C40 2.18(1), Pd4-C41 2.19(1), Pd4C42 2.39(1), Pd4-C43 2.34(1), Pd4-C44 2.15(1), Pd4-C45 2.20(1), Pd3C46 2.20(1), Pd3-C47 2.18(1), Pd3-C48 2.36(1).

Figure 7. Supramolecular binding of the $\left[\mathrm{BF}_{4} \cdots \mathrm{H}_{2} \mathrm{O}\right]^{-}$moiety by the dication of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ in the crystalline state.
interaction, as suggested in the dinuclear elimination reaction involving DBHT. Two equivalents of (E, E, E)-DPHT then can bind the $\mathrm{Pd}-\mathrm{Pd}$ moiety to release (E, Z, E)-DPHT (Scheme 13). This hypothesis is supported by the observation of the stereoretentive trans-olefination process described next.
4. Trans-olefination of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{4}\right]^{2+}$ Moiety between $\mathbf{1 , 3 , 5 -}$ Trienes. In the previous section, it is proposed that the transformation of $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial to $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ in the presence of free (E, E, E)-DPHT may involve the replacement of (E, Z, E) DPHT ligand with (E, E, E)-DPHT, from the observation of the release of free (E, Z, E)-DPHT during the reaction. The reaction of $\boldsymbol{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial with the t-Bu analogue (E, E, E)-DBHT was then examined. When 1 equiv of (E, E, E)-DBHT was added

Scheme 14

to the solution of $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$, the formation of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial (37\%) and $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ (33\%) was observed after 1 h (eq 9). After 3 h , the yield of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ antifacial reached 46%, while $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ decreased to 23% probably due to the partial precipitation of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ (red precipitates were observed), and approximately one-half the amount of free (E, E, E)-DBHT remained.

This result suggests the involvement of stereoretentive ligation of (E, E, E)-DBHT and stereoretentive release of (E, Z, E)-DPHT (Scheme 14). Selective formation of the transferred product $\mathbf{5}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$-antifacial indicates that the trans-olefination is mediated via syn addition of a Pd_{2} unit. If the elimination of DPHT ligand in $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial proceeds in a syn manner, (E, Z, E) DPHT should be released via $\mathbf{4}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-synfacial. The formation of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ is reasonably understood by the immediate trap of the released (E, Z, E)-DPHT by the remaining $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial, on the basis of the result described in section 3.2.

Conclusion

In summary, we have demonstrated the stereoretentive nature of dinuclear elimination and transfer of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{n}\right]^{2+}$ moieties between conjugated 1,3,5-trienes. From this study, several new aspects are gained on the role of conjugated olefin as the multidentate ligands for a dipalladium moiety: (a) a $\mathrm{Pd}_{2}{ }^{2+}$ moiety derived from 1 adds to 1,3,5-trienes to form bi- η^{3} allyldipalladium complexes; (b) dinuclear elimination from bi-η^{3}-allyldipalladium(II) complexes is induced by addition of phosphine $\left(\mathrm{PPh}_{3}\right.$ or dppm), and it proceeds in a stereospecific (syn) manner; (c) bis- $\mu-\eta^{3}: \eta^{3}$-triene dipalladium sandwich complexes are reversibly formed from bi- η^{3}-allyldipalladium(II) complexes and triene in a stereoretentive manner; and (d) transfer of dipalladium moiety $\left[\mathrm{Pd}_{2} \mathrm{~L}_{4}\right]^{2+}$ between $1,3,5$-trienes (i.e., trans-olefination of $\left[\mathrm{Pd}_{2} \mathrm{~L}_{4}\right]^{2+}$) proceeds stereoretentively. The observed highly stereoretentive dynamic behavior of $\mathrm{Pd}-$ Pd moieties on 1,3,5-trienes represents the pairwise behavior of a dinuclear metal moiety on the π-plane of sp^{2}-carbon framework; that is, multiple metal atoms behave in a correlated way on an extended sp^{2}-carbon framework through formation/ cleavage of metal-metal bonds.

Experimental Section

General Considerations. Unless specified, all reactions were carried out using standard Schlenk techniques under dinitrogen atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on either 270 (JEOL GSX270), 400 (JEOL GSX-400, JEOL ECP-400), or 600 MHz (Varian UNITY-INOVA 600) instruments. The chemical shifts were referenced to the residual resonances of deuterated solvents. Elemental analyses were performed at the Analytical Center, Faculty of Engineering, Osaka University. UV - vis spectra were recorded on a Shimadzu UV-3100PC. Unless specified, all reagents were purchased from commercial suppliers and used without purification. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{CN}$, and $\mathrm{CD}_{3} \mathrm{CN}$ were distilled from CaH_{2} prior to use. $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1}),{ }^{20}$ $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{2}),{ }^{20}\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime}\right),{ }^{21}$ $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime \prime}\right),{ }^{22} \mathrm{NaBAr}_{\mathrm{f}},{ }^{40}$ and $(E, E, E)-\mathrm{DBHT}^{41}$ were prepared according to the literature. (E, Z, E)-DPHT was generously gifted from Prof. Tetsuro Majima (Osaka University). All monitoring experiments using DPHT or DBHT were carried out in J. Young resealable NMR tubes wrapped with aluminum foil.

Synthesis of $\left[\mathbf{P d}_{2}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{3}}\right.\right.$-Hexatriene $\left.)\left(\mathrm{CH}_{3} \mathbf{C N}\right)_{4}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (3a). To a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})(152.1 \mathrm{mg}, 0.240 \mathrm{mmol})$ in $\mathrm{CH}_{3}-$ CN was added $1,3,5$-hexatriene $(31.4 \mu \mathrm{~L}, 0.289 \mathrm{mmol})$, and the mixture was stirred for 1 h at room temperature. The yellow mixture was filtered, and the volatiles were removed in vacuo. Recrystallization from $\mathrm{CH}_{3}-$ $\mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ gave microcrystals of $\mathbf{3 a}\left(113.9 \mathrm{mg}, 75 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=6.01(\mathrm{~m}), 4.37(\mathrm{dd}), 4.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 3.34(\mathrm{~d}, J=$ 12.7 Hz). Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8}$: C, 26.66; H, 3.20; N, 8.88. Found: C, 26.04; H, 3.16; N, 8.45.

Synthesis of $\left[\mathbf{P d}_{2}\left(\boldsymbol{\mu}-\boldsymbol{\eta}^{\mathbf{3}}: \boldsymbol{\eta}^{\mathbf{3}}\right.\right.$-Hexatriene $\left.)\left(\mathbf{C H}_{3} \mathbf{C N}\right)_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right]\left[\mathbf{P F}_{6}\right]_{2}$ (3b). To a solution of $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(\mathbf{2}^{\prime \prime}\right)(70.0 \mathrm{mg}$, 0.0633 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1,3,5-hexatriene ($8.3 \mathrm{~mL}, 0.0760$ mmol), and the mixture was stirred for 45 min at room temperature. The resultant mixture was filtered, and hexane was added to give a yellow powder. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane gave microcrystals of $\mathbf{3 b}(39.5 \mathrm{mg}, 52 \%$ yield $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=7.6-7.4$ (m), 6.32 (m), 5.55 (m), 3.42 (br d), 3.03 (br d), 2.05 (s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=26.2$ (s). Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{~F}_{12}$: C, 46.44; H, 3.73; N, 2.35. Found: C, 46.27; H, 3.71; N, 2.26.

Synthesis of 4-E,E,E-Antifacial. $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})(199.1$ $\mathrm{mg}, 0.315 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$, and ($\left.E, E, E\right)$-DPHT $(314.2 \mathrm{mg}, 1.352 \mathrm{mmol})$ was added to the solution. The solution was stirred for 1.5 h at room temperature. The orange solution was filtered, and crystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ afforded orange microcrystals of $\boldsymbol{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial ($136.0 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=$ $7.70(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 7.6-7.3(\mathrm{~m}), 6.57(\mathrm{br} \mathrm{t}), 5.21(\mathrm{~d}, J=11.1 \mathrm{~Hz})$, 4.46 (br d). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=135.9$ (s), 129.5 (s), 128.3 (s), 127.7 (s), 110.4 (s), 83.7 (s), 78.5 (s). Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~B}_{2} \mathrm{~F}_{8}$. $\mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 38.99 ; \mathrm{H}, 3.78$; N, 6.99. Found: C, 38.44 ; H, 3.60; N, 7.16.

Generation of 4-E,Z,E-Antifacial. The complex 4-E,Z,E-antifacial was generated quantitatively by dissolving $\left[\mathrm{Pd}_{2}((E, E, E)-\mathrm{DPHT})_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (8-E,E,E-meso) in $\mathrm{CD}_{3} \mathrm{CN}$ or $\mathrm{CH}_{3} \mathrm{CN}$ at $-40^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta=7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 7.6-7.3(\mathrm{~m}), 6.89(\mathrm{br} \mathrm{t}), 5.17(\mathrm{~d}, J=11.1$ Hz), 4.46 (br d). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=136.1$ (s), 129.3 (s), 128.4 (s), 127.7 (s), 108.0 (s), 83.2 (s), 76.0 (s).

Synthesis of 5-E,Z,E-Antifacial. To a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]$ $\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})(500.0 \mathrm{mg}, 0.790 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added (E, E, E)-DBHT $(159.6 \mathrm{mg}, 0.830 \mathrm{mmol})$, and the mixture was stirred for 50 min at room temperature under N_{2}. The mixture was filtered,
(40) (a) Kobayashi, H.; Sonoda, A.; Iwamoto, H.; Yoshimura, M. Chem. Lett. 1981, 10, 579. (b) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2600. (c) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920. (d) Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24, 3579.
(41) Horner-Wadsworth-Simmons modified Wittig-type reaction was used. See: (a) Spangler, C. W.; McCoy, R. K.; Dembek, A. A.; Sapochak, L. S.; Gates, B. D. J. Chem. Soc., Perkin Trans. 1 1989, 151. See for alternative synthesis and NMR data: (b) Knoll, K.; Schrock, R. R. J. Am. Chem. Soc. 1989, 111, 7989.
and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave a yellow powder $(89.8 \mathrm{mg})$, which contained $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial and $\mathbf{5 - \boldsymbol { E } , \boldsymbol { E } , \boldsymbol { E } \text { -antifacial. The }}$ supernatant was separated from the powder, and $\mathrm{Et}_{2} \mathrm{O}$ was added. Crystallization from this solution gave yellow microcrystals of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ antifacial ($446.8 \mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of this crystal in $\mathrm{CD}_{3} \mathrm{CN}$ showed the presence of two intra-series isomers $\left(93 / 7\right.$ at $\left.25^{\circ} \mathrm{C}\right) .{ }^{42,43}$ For major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=6.02$ $(\mathrm{m}), 4.22(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 4.11(\mathrm{~m}), 1.16(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=110.1(\mathrm{~s}), 102.4(\mathrm{~s}), 76.9(\mathrm{~s}), 34.4(\mathrm{~s}), 29.8(\mathrm{~s})$. For minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=5.53(\mathrm{~m}), 4.68(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 4.35$ (m), 1.15 (s). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=105.4$ (s), 100.7 (s), 73.5 (s), 34.6 (s), 29.9 (s). Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8}: \mathrm{C}, 35.56$; H , 4.88; N, 7.54. Found: C, 35.65; H, 4.84; N, 7.72.

Synthesis of 5-E, $\boldsymbol{E}, \boldsymbol{E}$-Antifacial. To a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]$ $\left[\mathrm{BF}_{4}\right]_{2}(\mathbf{1})(500.0 \mathrm{mg}, 0.790 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added (E, E, E)-DBHT $(457.6 \mathrm{mg}, 2.371 \mathrm{mmol})$, and the mixture was stirred for 5 h at room temperature. The reaction mixture was filtered, and the volatiles were removed from the filtrate in vacuo. To the residue was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the suspension was stirred overnight. The mixture was then concentrated, and $\mathrm{Et}_{2} \mathrm{O}$ was added. The supernatant was decanted, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$. The residue was then dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, the solution was filtered, and toluene was added to generate a yellow precipitate. Recrystallization from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene gave a yellow powder of $\mathbf{5} \boldsymbol{-} \boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ antifacial ($314.1 \mathrm{mg}, 54 \%$ yield) at the bottom of the vessel. The yellow crystalline materials on the wall of the vessel were a mixture of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}-$ antifacial and 5-E,E,E-antifacial. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=5.84(\mathrm{~m})$, $4.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 4.06(\mathrm{~m}), 1.14(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta$ $=112.6(\mathrm{~s}), 102.0(\mathrm{~s}), 79.7$ (s$), 34.3$ (s$), 29.8(\mathrm{~s})$. Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8}:$ C, 35.56; H, 4.88; N, 7.54. Found: C, 35.61; H, 4.88; N, 7.48.

Generation of $\mathbf{7 - E}, \boldsymbol{Z}, \boldsymbol{E}$-Antifacial. In an NMR tube, $\mathbf{5 - E} \boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}-$ antifacial ($7.0 \mathrm{mg}, 0.0094 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(4.9 \mathrm{mg}, 0.0188 \mathrm{mmol})$ were added, and $\mathrm{CD}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added. The temperature of the tube was kept at $-40^{\circ} \mathrm{C}$. After $5 \mathrm{~min}, \mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial disappeared, and only $\mathbf{7 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial was observed as a mixture of two isomers $(>95 /<5)$. For major: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.6-7.4(\mathrm{~m}), 5.79(\mathrm{br})$, 3.92 (br), 1.69 (br), 0.92 (br s). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=20.6$ (s). For minor: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=7.19,6.98,4.70,4.42,4.31,3.46$, 3.06. Only these signals were detected. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta=$ 18.2 (only one signal was detected).

Synthesis of 7-E,E,E-Antifacial. To a solution of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial ($100.0 \mathrm{mg}, 0.135 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added PPh_{3} (70.6 mg , 0.269 mmol). The color immediately changed from yellow to orange. The mixture was stirred for 5 min , and the reaction mixture was filtered and poured into $\mathrm{Et}_{2} \mathrm{O}$ to afford pale yellow precipitates. The powder was then washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to afford $7-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ antifacial ($127 \mathrm{mg}, 79 \%$ yield). A single crystal suitable for X-ray analysis was obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene. For major: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}\right) \delta=7.7-7.2(\mathrm{~m}), 4.69\left(\mathrm{~m}, \mathrm{H}_{2}\right.$, $2 \mathrm{H}), 3.95\left(\mathrm{dd}, J=13.2 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, \mathrm{H}_{1}, 2 \mathrm{H}\right), 3.61\left(\mathrm{~m}, \mathrm{H}_{3}, 2 \mathrm{H}\right)$, $1.58\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}, 6 \mathrm{H}\right), 0.59(\mathrm{~s}, t-\mathrm{Bu}, 18 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta=30.5(\mathrm{~s}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right) \delta=135.3-129.7$, $125.3\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right), 119.4\left(\mathrm{~s}, \mathrm{C}_{1}\right), 111.6\left(\mathrm{~s}, \mathrm{C}_{2}\right), 76.1\left(\mathrm{~s}, \mathrm{C}_{3}\right), 34.4(\mathrm{~s}$, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right), 29.8\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.8\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right)$. For minor: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right) \delta=7.7-7.2,5.24(\mathrm{dd}, J=14.8 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}$,
(42) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signal patterns of the major and minor isomers are quite similar (symmetric) to each other, and it is reasonably assumed that both isomers are the intra-series products, although it cannot be concluded that the isomer that was structurally determined by X-ray analysis is the major isomer in $\mathrm{CD}_{3} \mathrm{CN}$. For convenience, we abbreviate the two equilibrated isomers as $\mathbf{5 - E , Z , E}$-antifacial in this Article.
(43) The isolated $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial was poorly soluble in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. In the monitoring reactions of $\mathbf{1}$ and DBHT in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, however, 5-E,Z,Eantifacial could be detected because $\mathbf{5}-\boldsymbol{E}, \mathbf{Z}, \boldsymbol{E}$-antifacial becomes soluble in the presence of free $\mathrm{CH}_{3} \mathrm{CN}$ released from $\mathbf{1}$. In these conditions, $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}-$ antifacial existed as a mixture of two isomers (major/minor $=9 / 1$) as observed in $\mathrm{CD}_{3} \mathrm{CN}$.

Table 1. X-ray Crystallographic Data of 1, 3b, and 5-E,Z,E-Antifacial

	1	3b	5-E,Z,E-antifacial
formula	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{P}_{4} \mathrm{~F}_{12} \mathrm{Pd}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Pd}_{2}$
fw	632.72	1189.4	742.96
space group	$P 2{ }_{1} / a($ No. 14)	C2/c (No.15)	Pbca (No. 61)
a, \AA	10.0193(6)	32.791(4)	17.2416(3)
b, \AA	20.799(1)	8.962(2)	12.1588(3)
c, \AA	12.0023(7)	19.133(3)	$29.5145(5)$
α, deg			
β, deg	112.696(2)	113.577(10)	
γ, deg			
V, \AA^{3}	2307.5(3)	5153(1)	6187.3(4)
Z	4	4	8
D (calcd), $\mathrm{g} / \mathrm{cm}^{3}$	1.821	1.533	1.595
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) mm^{-1}	16.33	8.99	12.29
temp, K	273	296	277
R1	0.041	0.077	0.036

$\left.\mathrm{H}_{1}\right), 5.03\left(\mathrm{dd}, J=13.6 \mathrm{~Hz}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.42(\mathrm{dd}, J=11.2 \mathrm{~Hz}$, $\left.J=10.8 \mathrm{~Hz}, \mathrm{H}_{4}, 1 \mathrm{H}\right), 3.89\left(\mathrm{dd}, J=13.6 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \mathrm{H}_{5}, 1 \mathrm{H}\right)$, 3.72 (dd, $\left.J=14.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{2}, 1 \mathrm{H}\right), 3.43(\mathrm{dd}, J=11.2 \mathrm{~Hz}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{H}_{3}, 1 \mathrm{H}\right), 1.95\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}, 3 \mathrm{H}\right), 1.64\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}, 3 \mathrm{H}\right), 0.78$ (s, t-Bu, 9H), $0.61(\mathrm{~s}, t-\mathrm{Bu}, 9 \mathrm{H}) \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right) \delta=$ $31.3(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 22.1(\mathrm{~d}, J=12.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $25{ }^{\circ} \mathrm{C}$) $\delta=135.3-129.7,125.3\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}\right), 123.3\left(\mathrm{~s}, \mathrm{C}_{6}\right), 113.5(\mathrm{~s}$, C_{1}), $108.2\left(\mathrm{~s}, \mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{5}\right), 108.0\left(\mathrm{~s}, \mathrm{C}_{2}\right.$ or $\left.\mathrm{C}_{5}\right), 80.3\left(\mathrm{~s}, \mathrm{C}_{3}\right), 66.2\left(\mathrm{~s}, \mathrm{C}_{4}\right)$, $34.7\left(\mathrm{~d}, J=3.1 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.1\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.3(\mathrm{~d}$, $\left.J=4.6 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 30.0\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.8\left(\mathrm{~s}, C \mathrm{H}_{3} \mathrm{CN}\right)$. Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8}$: C, 54.71; H, 5.10; N, 2.36. Found: C, 54.89; H, 5.15; N, 2.35 .

Synthesis of $(\boldsymbol{E}, Z, \boldsymbol{E})$-DBHT. (E, Z, E)-DBHT was conveniently obtained by the dipalladium-mediated isomerization from (E, E, E)DBHT. To a solution of $\mathbf{5}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial ($300.0 \mathrm{mg}, 0.404 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added dppm ($294.9 \mathrm{mg}, 0.767 \mathrm{mmol}$), and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. The volatiles were removed in vacuo, and cold pentane $\left(-20^{\circ} \mathrm{C}\right)$ was added to the residue. The suspension was filtered immediately, and the volatiles were removed in vacuo to give a colorless powder of (E, Z, E)-DBHT $(49.5 \mathrm{mg}, 81 \%$ yield). NMR data were found in the literature. ${ }^{4 \mathrm{~b}}$ The compound that remained on the filter funnel was $\left[\mathrm{Pd}_{2}(\mathrm{dppm})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$.

Synthesis of 8-E, $\boldsymbol{E}, \boldsymbol{E}$-Meso. To a solution of $\left[\mathrm{Pd}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$ (1) $(243.4 \mathrm{mg}, 0.385 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added (E, E, E) DPHT ($247.1 \mathrm{mg}, 1.064 \mathrm{mmol}$), and the mixture was stirred for 2 h at room temperature. The reaction mixture was filtered, and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ gave a red powder of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso $(251.8 \mathrm{mg}$, 77% yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=7.46(\mathrm{t}), 7.05(\mathrm{t}), 6.78(\mathrm{~d}), 6.76(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}), 5.26(\mathrm{~m}), 3.98(\mathrm{~m}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=132.0$ (s), 130.6 (br s), 130.0 (s), 129.7 (s), 129.4 (s), 98.9 (s), 93.1 (s). Anal. Calcd for $\mathrm{Pd}_{2} \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{~F}_{8}$: C, 50.80; H, 3.79. Found: C, 50.51; H, 3.96 . A single crystal suitable for X-ray analysis was obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / t$-Bu-benzene $/ n$-hexane. ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$ rac: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=5.95(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 5.79(\mathrm{~m}), 3.67$ (m).

Synthesis of 8-E,Z,E. The complex $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial $(15.0 \mathrm{mg}$, $0.0192 \mathrm{mmol})$ and (E, E, E)-DBHT $(1.8 \mathrm{mg}, 0.0095 \mathrm{mmol})$ were placed in an NMR tube. To the tube was added $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, and the tube was supersonicated. After 2 h , the formation of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ (37% NMR yield) and $\mathbf{5}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial (41% NMR yield) was observed with trace (E, Z, E)-DPHT. The complex $\mathbf{8 - E}, \boldsymbol{Z}, \boldsymbol{E}$ was obtained as red crystals together with $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial (yellow crystals) from the reaction of $\mathbf{4}$ - $\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial and $(E, E, E)-\mathrm{DBHT}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with stirring for 20 min followed by filtration and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene. A red crystal suitable for X-ray diffraction analysis was picked up from the crystalline mixture. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=$ $7.39(\mathrm{~m}, p-\mathrm{Ph}), 7.17\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 6.93(\mathrm{~m}, o-, m-\mathrm{Ph}), 5.07(\mathrm{~m}$, $\left.\mathrm{H}_{2}\right), 4.56\left(\mathrm{~m}, \mathrm{H}_{3}\right)$.

Table 2. X-ray Crystallographic Data of 7-E,E,E-Antifacial and 8-E,Z,E

	$7-E, E, E$-antifacial	$8-E, Z, E$
formula	$\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{P}_{2} \mathrm{Pd}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{O}_{1} \mathrm{Pd}_{2}$
fw	1185.44	869.07
space group	$P 2_{1} / n(\mathrm{No} .14)$.	$P 1(\mathrm{No} 2)$.
a, \AA	$14.1209(4)$	$14.4348(3)$
b, \AA	$17.2838(6)$	$14.8652(4)$
c, \AA	$22.5026(9)$	$16.9596(4)$
α, deg		$72.4075(5)$
β, deg	$97.679(2)$	$90.278(1)$
γ, deg		$81.7435(7)$
V, \AA	$3442.8(3)$	4
Z	4	1.684
$D(\mathrm{calcd}), \mathrm{g} / \mathrm{cm}^{3}$	1.447	11.22
$\mu(\mathrm{Mo} \mathrm{K} \alpha), \mathrm{cm}^{-1}$	7.84	213
temp, K	223	0.042
R 1	0.065	

X-ray Crystallographic Studies. The crystallographic data were summarized in Tables 1 and 2. All measurements were made on a Rigaku AFC5R diffractometer (for 3b) or Rigaku RAXIS-RAPID imaging plate diffractometer (for 1, 5-E, $\boldsymbol{E}, \boldsymbol{E}$-antifacial, 7-E, $\boldsymbol{E}, \boldsymbol{E}$ -
antifacial, and $\mathbf{8}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E})$ with graphite monochromated Mo K α radiation. The calculations were carried out with the teXsan crystal structure analysis software package of Molecular Structure Corp. The structures were solved by heavy-atom Patterson methods and refined by full-matrix least-squares procedures. The non-hydrogen atoms were refined anisotropically. Detailed crystallographic data were collected in the Supporting Information.

Acknowledgment. This work was supported by PRESTO, Japan Science and Technology Agency (JST), and Grants-inaid for Scientific Research, Ministry of Education, Culture, Sports, Science, and Technology of Japan. Thanks are also due to the Analytical Center, Faculty of Engineering, Osaka University, for the use of NMR facilities.

Supporting Information Available: Details of the X-ray single-crystal structural analyses for 1, 3b, 5-E,Z,E-antifacial, 7-E,E,E-antifacial, and $\mathbf{8 - E}, Z, \boldsymbol{E}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0576740

[^0]: (1) Markezich, R. L.; Whitlock, H. W. J. Am. Chem. Soc. 1971, 93, 5291.
 (2) (a) Wadepohl, H.; Büchner, K.; Pritzkow, H. Organometallics 1989, 8, 2745. (b) Adams, R. D.; Wu, W. Organometallics 1993, 12, 1243. (c) Weng, W.; Arif, A. M.; Ernst, R. D. Organometallics 1998, 17, 4240. (d) Mashima, K.; Fukumoto, H.; Tani, K.; Haga, M.; Nakamura, A. Organometallics 1998, 17, 410. (e) Fukumoto, H.; Mashima, K. Organometallics 2005, 24, 3932.
 (3) Murahashi, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 1999, 121, 10660.
 (4) Murahashi, T.; Nagai, T.; Mino, Y.; Mochizuki, E.; Kai, Y.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 6927.
 (5) Murahashi, T.; Higuchi, Y.; Katoh, T.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 14288.
 (6) Tatsumi, Y.; Nagai, T.; Nakashima, H.; Murahashi, T.; Kurosawa, H. Chem. Comтй. 2004, 1430.
 (7) It was also discovered that perylene binds a tetrapalladium chain through its tetraene edge: Murahashi, T.; Uemura, T.; Kurosawa, H. J. Am. Chem. Soc. 2003, 125, 8437.

[^1]: (8) (a) Muetterties, E. L.; Rhodin, T. N.; Band, E.; Brucker, C. F.; Pretzner, W. R. Chem. Rev. 1979, 79, 91. (b) Muetterties, E. L. Chem. Soc. Rev. 1982, 11, 283.
 (9) For adsorption of olefin on Pd or Pt surface: (a) Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. J. Am. Chem. Soc. 1996, 118, 2942 and references therein. (b) Szulczewski, G.; Levis, R. J. J. Am. Chem. Soc. 1996, 118, 3521. In this paper, it was proposed that desorption of di- σ bonded ethylene from $\operatorname{Pt}(111)$ proceeds via a radical intermediate.
 (10) (a) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923 and references therein. (b) Casey, C. P.; Audett, J. D. Chem. Rev. 1986, 86,339 and references therein.
 (11) (a) Kreiter, C. G.; Lipps, W. Angew. Chem., Int. Ed. Engl. 1981, $20,201$. (b) Kreiter, C. G.; Lipps, W. Chem. Ber. 1982, 115, 973. (c) Kreiter, C. G.; Leyendecker, M. J. Organomet. Chem. 1985, 292, C18.
 (12) Guggolz, E.; Oberdorfer, F.; Ziegler, M. L. Z. Naturforsch., B: Chem. Sci. 1981, 36, 1060.

[^2]: (13) (a) Chisholm, M. H.; Huffman, J. C.; Lucas, E. A.; Lubkovsky, E. B. Organometallics 1991, 10, 3424. (b) Barry, J. T.; Bollinger, J. C.; Chisholm, M. H.; Glasgow, K. C.; Huffman, J. C.; Lucas, E. A.; Lubkovsky, E. B.; Streib, W. E. Orgaometallics 1999, 18, 2300.
 (14) (a) Hersh, W. H.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 6992. (b) Hersh, W. H.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 5834. (c) Hersh, W. H.; Bergman, R. G. J. Am. Chem. Soc. 1983, 105, 5846.
 (15) (a) Takats, J. Polyhedron 1988, 931. (b) Spetseris, N.; Norton, J. R.; Rithner, C. D. Organometallics 1995, 14, 603. A related trans-dimetalation involving 1,3-diene was reported in ref 14c.
 (16) (a) Hembre, R. T.; Scott, C. P.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3468. (b) Hembre, R. T.; Ramage, D. L.; Scott, C. P.; Norton, J. R. Organometallics 1994, 13, 2995. (c) Ramage, D. L.; Wiser, D. C.; Norton, J. R. J. Am. Chem. Soc. 1997, 119, 5618. (d) Bender, B. R.; Ramage, D. L.; Norton, J. R.; Wiser, D. C.; Rappé, A. K. J. Am. Chem. Soc. 1997, 119, 5628.

[^3]: (25) (a) Kurosawa, H.; Ogoshi, S.; Chatani, N.; Kawasaki, Y.; Murai, S. Chem. Lett. 1990, 1745.'(b) Granberg, K. L.; Bäckvall, J. J. Am. Chem. Soc. 1992, 114, 6858.
 (26) The half-sandwich type, bi- η^{3}-allyl dipalladium complexes can take two conformations where two Pd atoms are located either on the same face or opposite faces of the triene plane, with the latter being normally more stable.

[^4]: (29) Gebauer, T.; Frenzen, G.; Dehnicke, K. Z. Naturforsch., B: Chem. Sci. 1992, 47, 1505.

[^5]: (30) The E / Z ratio of the released $1,3,5$-hexatriene could not be determined due to the overlap of those signals with the broad signals of $\mathbf{3 b}$.

[^6]: (31) The involvement of trans-olefination, which is described in section 4 in this Article, does not result in such isomerization
 (32) (a) One reviewer suggested a possibility of the involvement of some transient adduct between $\mathbf{1}$ and oxygen or water responsible for the stereospecific dinuclear addition under aerobic conditions. (b) Another transient active species Pd^{2+} may cause the isomerization ${ }^{32 \mathrm{c}}$ of free $(E, Z, E)-$ DBHT to free (E, E, E)-DBHT during the dinuclear addition process, resulting in slow formation of $\mathbf{5 - E}, \boldsymbol{Z}, \boldsymbol{E}$-antifacial in the reaction of $\mathbf{1}$ and ($E, Z, E)$-DBHT. (c) Maitlis, P. M. The Organic Chemistry of Palladium; Academic Press: New York, 1971; Vol. 1, p 179, Vol. 2, p 111.
 (33) Miedaner, A.; DuBois, D. L. Inorg. Chem. 1988, 27, 2479.

[^7]: (34) The minor product showed six trienyl protons and two phosphorus doublet $\left(J_{\mathrm{PP}}=13 \mathrm{~Hz}\right)$ signals. The $J_{\mathrm{H} 2-\mathrm{H3}}$ coupling constant $(7.2 \mathrm{~Hz})$ indicated the cis configuration at the $\mathrm{C} 2-\mathrm{C} 3$ bond in the minor product. It is also notable that the carbons of both t-Bu groups were J-coupled with phosphorus centers $\left(J_{\mathrm{CP}}=3.8 \mathrm{~Hz}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right.$ for methyl carbons, $J_{\mathrm{CP}}=3.1 \mathrm{~Hz}, J_{\mathrm{CP}}=3.8$ Hz for quaternary carbons). We assume a $\mathrm{Pd}-\mathrm{Pd}$ bonded structure shown below as the minor product.

[^8]: (35) (a) Leoni, P.; Pasquali, M.; Sommovigo, M.; Albinati, A.; Lianza, F.; Pregosin, P. S.; Rüegger, H. Organometallics 1993, 12, 4503. (b) Leoni, P.; Pasquali, M.; Sommovigo, M.; Albinati, A.; Pregosin, P. S.; Rüegger, H. Organometallics 1996, 15, 2047.
 (36) Murahashi, T.; Kanehisa, N.; Kai, Y.; Otani, T.; Kurosawa, H. Chem. Соттип. 1996, 825.

[^9]: (37) There are two isomers for $\mathbf{8}$, due to the two stacking modes (eclipsed and staggered) of zigzag conjugated polyenes. The existence of two isomers was revealed on the related sandwich complex $\left[\mathrm{Pd}_{3}\left(\mu-\eta^{3}: \eta^{2}: \eta^{3} \text {-tetraene }\right)\right]^{2+}$; see ref 5 . In eq $8, \boldsymbol{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso was isolated as a single isomer. The structure of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}-\mathrm{rac}$ was reasonably assumed from the ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal pattern, which was similar to that of $\mathbf{8}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-meso.

[^10]: (38) The results of theoretical investigation on the electronic structure of $\mathbf{8}$ will be published elsewhere. It is notable that a related sandwich structure was found in $\left[\mathrm{Ni}_{2}\left(\mu-\eta^{3}: \eta^{3} \text {-pentadienyl }\right)_{2}\right]$, see: (a) Rienäcker, R.; Yoshiura, H . Angew. Chem., Int. Ed. Engl. 1969, 8, 677. (b) Krüger, C. Angew. Chem., Int. Ed. Engl. 1969, 8, 678. (c) Böhm, M. C.; Gleiter, R. Chem. Phys. 1982, 64, 183.

[^11]: (39) The formation of another minor product (28% at $25{ }^{\circ} \mathrm{C}$ from $\mathbf{4}-\boldsymbol{E}, \boldsymbol{Z}, \boldsymbol{E}$ antifacial and 23% at $25^{\circ} \mathrm{C}$ from $\mathbf{4}-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial) was observed. A slight amount of the minor product remained after 20 h during the reaction of $4-\boldsymbol{E}, \boldsymbol{E}, \boldsymbol{E}$-antifacial and (E, E, E)-DPHT. Efforts to isolate this product failed, and the structure remains elusive. Because the minor product showed 12 nonaromatic CH proton resonances, the product is assumed as a sandwich complex having an unsymmetric structure. One possible structure is shown below. ${ }^{1} \mathrm{H}$ NMR signals $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 23{ }^{\circ} \mathrm{C}\right)$ for $-\mathrm{CH}-$ of one DPHT, $\delta=$ $6.85\left(\mathrm{H}_{2}\right), 6.42\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.37(\mathrm{dd}, J=13.6 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{5}\right), 5.18\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.78\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, \mathrm{H}_{1}\right)$, $2.46\left(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, \mathrm{H}_{4}\right)$; for $-\mathrm{C} H-$ of another DPHT, δ $=6.60\left(\mathrm{H}_{1}\right), 6.58\left(\mathrm{H}_{6}\right), 5.42\left(\mathrm{dd}, J=13.6 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.05(\mathrm{dd}$, $\left.J=13.8 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.28\left(\mathrm{t}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.88(\mathrm{t}, J=11.2$ $\mathrm{Hz}, \mathrm{H}_{4}$).

